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Let us consider the non-self-contained system of the form
L mdr=f () +pF (L 2 5, B (0.1)

We shall assume that F (¢, @, #, §) isananalytical functionof z, #* and the small para-
meter jL in some domain of variation % and X* for 0 p < po. Furthermore, F and J'
are continuous periodic functions of the time 7 having a period equal to 217, The quan~
tity 772 can be an integer or zero, In the first case, the Fourier series of the function JH
does not have any /7 - th order harmonics, and in the other case it does not have a con-
stant term,

In the papers 1,2 and 3] it is shown how periodic soiutions of the system (0,1) can
be obtained in the vicinity of the fundamental resonance for simple and repeated roots
of the amplitude equations for m#O. It was assumed then, that at least one of the
elements of the functional determinant of the system of equations yielding § and ¥y
is different from zero, In the present paper consideration is given to the case in which
aill the elements of the functional determinant are equal to zero, or when 72 =,

1, Al the elements of the functional determinant are equal to zero,

The generating function for {i = 0 has the general periodic solution

zo {t) = @ (t) 4 Ao cos mt - Bom™sin mt {1.1)
depending on two arbitrary constants 4, and B, .
We search periodic solutions of Eq, (0, 1) using Poincar€’s method, Let us take for
initial conditions
2(0)=¢(0) +40+P, 2(0)=¢(0)+Bo+ 71 1.2)
Here f and Y are functions of the parameter | vanishing for L = 0,

‘The solution of Eq, (0,1) is an analytic function of Ao + B, Bo+ 7 and |,
Let us represent it in the form

z (1) =@ (t) + (Ao - B) cos mz - Bo:'l’ sin mt +
SO
8Ca(t) 3C.(t) 1 2°C,(t
3 [onm+ T s+ 2 1 0 T
=}

The functions Oy (%) are determined by the relations
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t
1 .
Cn () = ;-S Hy(@)sinm (t—r)dr, H,(t) =

0

1 d"tr
( (1.4)

(n—DI \gyr-1 >B=Y=uwo
The values of the functions Ay (¢) for 7= 1,2, 3 are derived in [1}, From the period-
icity conditions we may derive the equations for the fundamental amplitudes 4, and 5,

Cy (21, Ao, Bo) = 0, C; (2m, Ao, Bo) = 0 (1.5)

3 4205

and also the equations for determining the parameters 8 and Y as implicit functions of
ul

Grouping the terms entering these equations in the form of homogeneous polynomials,
we get

aCs 1 e¢ 8 8¢,
EFis a;zs.,”c*“‘'Ta:aB2 aAf,aBOB””z JEa T
8C, aC, 1 9,
+ 34, P +gp, T+ Ot 45 b 6483 T 64.,263.,37*
1 ¢ 1 8%, 1 o,

RARRE vyl o Gl el v I Sl v i U 340,,Boﬁru+ =0 (1.6)

and an analogous equation in which all the (', are replaced by Cy*, In these formulas
all the functdons C, (¢) and C, *(%) and their derivatives with respect to A, and B, are
taken for £ = 21,

A necessary and sufficient condition for the roots of the amplitude equations to be re-
peated is that the functional determinant

8C; 8Cr  8C, 8Cy
Di= 54y 3B, — 3B, 94,

=0 (1.7)

be equal to zero,
In the general case it is possible to determine the number of times a root is repeated
by considering whether the determinants D5, Dgs.,, etc, are equal to zero [3). In this

case aC;  0C; 9C  aCy
on the basis of the roots of Eqs, (1.5). Thus all the determinants [, (72 = 2,3,...) are
equal to zero and do not enter the solution of the given problem,

We shall assume, as was done in [3], that each of Egs, (1, 5) determines a curve on the
plane of the amplitudes 4 , 5, . The points of intersection of the curves represent the
roots of these equations,

Let us differentiate twice Eqgs, (1, 5) with respect to 4 5, assuming that 5, is a function
of A,. Taking (1, 8) into consideration, we have
3’01 a2Cy dBo 6201 ’JBO 2 92 01 a2Cy dBo a:Cy’ dB, \2 s
9402 T2 34,98, dA, T B (dAo) =0. 337 T2549B, d4, * 3B¢ (d_Ao> =0

(1.9)
At the points of double intersection of the curves the tangents to those curves must
coincide, Thus the resultant of the quadratic Eqs, (1, 9) with respect to dBo / dAo must
be equal to zero, We have
( *Cy  9*Cy 0%Cy"  8:Cy >< 82C; 9°Cy 220 0*Cy ) ,
0442 0APBy ~ 8A® 0Ag0Bg |\ dBg? 0 Ae3By T 0Bg® 3A4e0Bo

Dy® =
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+ (626'1 #C,  8°Cy 0%Cy 2
31> 9B ~ 9.0¢° 9By )
Let us differentiate (1. 5) with respect to 4, a third time, We get

- (1.10)

2By

d*B d?
d’a(Cl)-l-m‘z(Cl)m%"—*-O, D3 (C1') - D2 (Cr) gz =0 (1.11)

In these formulas we have denoted

82C, 02Cq dBo) (1 1_))

D2 (Cr) =3 (6.-103Bo aBs A1,
3C, #C, dB, 3¢, (dB,, )2 o, (aB., 3

Q3(C1) =338 +334:28B,d4, T 20:100Bs \d 1,/ T~ FBS \d:lo
and similarly for (y *, Let us form the determinant of the system (1,11)
Dy* = Oy (€D, (Cx')"’ D, (C)) O, ‘(Cl) (1-13)

If Dz.: 0. the Eqs, (1.5) have at least a root repeated three times, Consequently,
Do*#0is anecessary and sufficient condition  for a double root. We shall stop at this
point the analysis of the order of the roots,

Let us examine in detail the case of double roots, Let us assume that 8 and Y can be
expanded in power series of u“s , From Expansion (1,6) and analogously to it we find
the equations for the coefficients Ay, and By,

1 92C, a2C, 1 8:C,
Z aA02 Al/’ +6A BB A'/:'B” + 2 a_B 2 B’/l + Cz-0

(1.44)
1 8¢y 2 3¢y’ 1 8¢y
= 34F A + 5apBy 4Bt 3 aBg By +0 =0
It C; =03 =0, the coefficiens 4., and By, become equal to zero, We shall assume
that one of the quantities C'8 or 02 is not equal to zero; then A,, 5= 0 and B,, =+ 0.
Using the relations (1,10) we may transform the system (1,14) into the form:

KAy} = K,, LiBy?=1L, (1.15)
The coefficients X7 and A, have the values
d2Cy 0°Cy 8C," 92C, 92Cy awcy
= (3A02 6B02 - 6/102 6B02 )( aBo Cz - 63 2 Cz) +
?C, #Cy 90y 90, \y #C, . &0y
+2< 3B 9408, ~ OB 6A.,GBD)(6406B0 ¥ — 34,98, )

] 2, 2
K= 35 O — 35 ©)

and the coefficients ; and L can be obtained from the coefficients £ and A5 by re-
placing the differentiation with respect 1o 4, by a differentiation with respect to 5,
and vice versa,

The Eqs, (1. 15) have. either two real roots or none, The equations for the ensuing
coefﬁcmnrs are linear, Consequemly the Egs, (0.1} will have either two real solutions
which can be expanded in powers of p"/* ornone, For the coefficients A1 and B we

get (1.16)

52, 3 1 oC
oA Avt T 5 agE, (AyBr T By A + 5w ag & By.B1+ 5 g Ayl +



398 A, P, Proskuriakov

1 ¢ 1 0%, B, A a

e e 2 . . 2 iy ! :
t T FaaE Pt T G N o Bty b g B, =0

and an analogous equation obtained by replacing all the ( by C+, It can be shown
that the determinant of these equations is not equal to zero,
If 4y, = B, =0, the coefficients 4, and B) are determined from the system

JCy a0, ac

L 8201 X 1 1 ! D | 2 i 8] s

2 o1 Wt Gqen, W T g B b gy bt gy Br+Ce=0 (147)
1 eey ey 1 8cy . 8Cy  dCy

PR NE] As? +mz1131 + 5 WBB + T, Ay EN By Cs ==0 ete.

Expressions for the determination of the coefficients of the exparsions of the solution

of Eq, (0.1) in series of integer or fractional powers of the parameter L are derived in

[1 and 3], For a practical determination of those coefficients, it is sometimes easjer

to find them by means of a successive integration of the equations which determine them,
Let us consider the example

2" 4z =y (az® -+ bz®) + p2(veost | Asini) (1.18)

We have the generating function
xq (t) = Ap cos t - Bp sin ¢ (1.19)
Let us construct the amplitude Eqs, (1.20)

Cr(2m) =%y 7 (bAg — aBo) (A¢® + Bo?), €' (2m) = ¥4 7w (aAo -+ bBo) (4o® + Bo?)

The roots of these Eqs, are
Ao = By =0 (1.21)

All the first and second derivatives of {y and (" with respect to 4, and B, are eq-
ual to zero, Thus we get D,* = D,* = 0. Let us compute the third derivatives of the
indicated quantities and substitute them into Eqs, (1.11). From these relations it can
be seen that two cubic equations with respect to dBs / d4e have a common factor equ-
al to (dBo / d4o)* + 1. Consequently the roots of (1,21) are repeated three times,

Let us seek B and Y in the form of series inthe powers of l's  We substitute the
values of the third derivatives of ) and () ', and also the quantities C; = — mA" and
C, = mv in the equations for the coefficients A4, and B, , which can be easily ob-
tained from the relation (1,6) and the one analogous to it, As a result of the comput-~
ations we get

4 's—~_~-—4— (av — DA B 3___4__ (ah + bv)?
M ST e PR A T T (@ PR )

Since there is only one pair of real values of the coefficients 4, and B, , there will
be only one real periodic solution of Eqs, (1,18) which can be expanded in a power of
series of ps.  To obtain the other coefficients of this series we use the method of
successive integration of the equations for =z, (¢

Skipping the derivations, we get as a final result

z () = ey, (1) + p2ay (1) + w0 + o (1.23)
The remaining intermediate terms of the series are equal to zero, The coefficients
zy, (£) and =z, () have the following values

(1.22)
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oy (1) = Ay cosit 4 By sin ¢ {1.28
l"-v‘ B‘f% B
32() = (’()Wue‘ — ¥ )L05t+( ;; ‘—P}?,,)\lnil*—
-+ ;) [(aP 4 bQ)cos 3t + (BP — aQ) sin 3t} (1.25)

Here we have introduced the notation
e= q{a®— Tb%), g = 3b(5a®— 3b%)
P =4, (A‘,’f — BB,/f), Q = By, (B,I,’2 — 3‘4;';‘2)

The coefficients =z., (f) contains the first, the third and the fifth harmonics,
For Duffing's equation with b =0 and A =0 we get

4 v 1
Al,sam._-—?)——?, B, =0, xg(t)m_dz( cost+c033t)

2. There are no self oscillations in the generating functions (772 = J), In the given
case, the general solution of the generating function is aperiodic
wo (1) = @ (1) + Ao -+ Bt 2.0

Let us take the same initial conditions as in the first case, that is in the form (1,2)
for the system (0, 1) under investigation, The solution of the system (0, 1) for 7= O has

the form
2 () =9 <=>+Ao+ﬁ+(3.,+~nw~2[c 0+ 1 250 e ey

==}
The functions C( %) and their first derivatives with respect to ¢ are determined by
means of Formulas

t t
Colt) = S Ho(£) (1 — 1) dr", Colt) = S H, (&) dt’ 2.3)
0 0

From the conditions of periodicity of the solution X( %) and its first derivatives with
respect to T we have

o0
ac 1 2C,
20(Bo+1) + 3] [On 2+ T8+ G52 T+ gan B - W= 0
n=1 (2.4)
o
oCy, 1 0%,
2 [Cn (2“)+-3TBTBB: f +—5 3 3A02 pe T"'}P’on
n=1
Substituting in these equalities 8 =y =1 = 0, we get the amplitude Egs,
2nBy = 0, Ci" (2r, Ag, By) = 0 (2.5)

which reduces to a single equation with respect to 4.
In the case of simple roots of the amplitude equation, we get an infinite system of
pairs of linear equations for the coefficients 4, and 5, The equations for 4; and B

are; aCy oy
B4+ C1=0, o= At —p- Bi+Cr =0 2.6)

The equations for the coefficients 4, and 5y are

ac ac
2By + 54 A+ 5. Bi+Ca=0
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aC] 661 1 (’)3(,;, () ( ] 7 (/‘ )
74, 2t ap, Vet T At gan, WPy e B
oy oC
b A+ 9}} By Oy =0 2

This system can always be solved since ',/ 9.4¢ == O.
In the case of repeated roots of the amplitude equation let us express from the first
equation in (2, 4) the parameter Y in the function ofAc +B and U :

) am Lo ’1' ,
vy =Pt B+ LA+ 5 g B aA 2Bz - Popis L (2.8)
The coefficients F, are computed from Expressions
1 9C |
Py=—C, Po= 53 3, O —Ce (2.9)
1 [10Cy\2 1 6, 1 /dC, 3C,
Py=—70 L(GBO) i GBOEC’} 1oy (68 G+ 35, Cl)"CS

Let us introduce the expression for Yy in the second equation in (2,4), We get relations
of the form
3 Qalto +B) "t =0
n=1
whereupon Q, = C,(2r, Ay, Bo)=0. In the developed form the expression for the para=
meter B is '

BB 1) = B Ot g e B S B Qe
+ i 5513 Be- 1 ggfﬁu - -QLBW FQau - =0 (2.10)
Computing the coefficients @, , we get
Qs = — ,in ZC;O Cy -} Cy
Q= o (G 5y + o O] 6= 3 (55, O 3 O] 6
Q=g o ot 3 (9~ 7 o Ol P e
For UL = 0 we get
00 8, 0) = g G G B (2.12)

Thus, in the given particular case, the problem of the determination of the parameters
B and v, is reduced to the solution of one equation for the parameter 3, as was done in
the general case [3], The analysis of the solution of this equation in the case of roots of
the amplitude equation repeated twice and three times is given in [4],

The form of the expansion of the periodic solutions of the Eq, (0.1) is determined in
the form of expansions of the parameters 8 and Y. Let us assume for instance that the
solution is expanded in power of u':

z(8) = 0 (&) + B 2y, (&) + p2y () + e (2.13)
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The coefficients of this expansion for 7 = 0 can be determined by means of the Form-
aC, {t)
MBS ()= Ay, w1(t) = Av - Bit -+ Ca(t), 2y, (8) = Ay, + Byt + 4y, 54

8C, {1 8C; ({t i a32C; (1)
Za (t) == Ag 4 Bt -:r- A al|(o) -~ B aljf(f ) -+ "2' A:/} TA]—oi- +Cz(t) (214)

etc, In the given case it is convenient to find also these coefficients directly by inte~
grating the differential equation determining them,
Az an example let us consider the system
2" =pleost + fo(2) 4+ 2" fi (z) + 2" ¥, (9)] (2.15)
whete the functions [/, (X) have derivatives of any order,
Forming the amplitude equation for the given example, we get
C, (2n) = 2nfo (Ao) = 0 (2.16)

Let us take some real root 4 o Of this equation, We shall consider two cases:
1) Case of a single root fo’ (4o) 5= 0. Integrating in succession the equations for Xy (£),
we find periodic solutions of the Eq, (2,15) with an accuracy up to W°, inclusively

Z(f) = Ao —pcost - p? By - fo (o) cos t — fy (Ao) sin t] + ... (2.17)
where

Eg == — 10 {13 fo” (Ao) + f2 (2} 1 [fo' (Ao)]? (2.18)
2) Case of a double root fo' (4o} = 0,but fo” (4e) 5 0. The computations show that
in that case the quantity @, = 0 and the equation for the coefficient A1

1 00y . Q. |,
T oag AT g, AT =0

has single roots, Thus the parameters B and Y are expanded according to integer powers
of U, We get

) (f) = — cost | Ey,, 2y (£) = — f, (Ao) 5in t  Foq
From the perjodicity conditions for the function X3 () we get
En=4V—{+%), @ = fa(Ao)/ fo" (Ao) (2.19)
Consequently, for #; 3 to be real it is necessary that
fo" (Ao} 4 2f2 {40) < O 2.20)

From the periodicity conditions of X4 () we get

By [BEgofo” (Ao)+YsEx*fe” (Ao) + M ofo™ (Ad) + Yofe' (A0)] = 0 (2.21)
It follows that if g == —1/,, we have
Ep = — ' I3 (1 —~ )fo” (Ao} + ' (Ao)] [fu" (40)]7 (2.22)
Thus the periodic solution for a root repeated twice is, with the same accuracy

w(t)= Ao+t V—(a +2) —cost] +p? [Epp—f1 (o) sint] -+ (2.23)

For o= —1/, the constantintegrationof Ey, becomes zero, The quantity Ey isnot
determined from the condition(2, 21), Anecessary additional investigation is necessary since
the form of the expansion of X(¢) canchange for ¢ = — 1/, .
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